Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Expert Opin Drug Discov ; 17(7): 685-698, 2022 07.
Article in English | MEDLINE | ID: covidwho-1873798

ABSTRACT

INTRODUCTION: The potential of virtual reality (VR) to contribute to drug design and development has been recognized for many years. A recent advance is to use VR not only to visualize and interact with molecules, but also to interact with molecular dynamics simulations 'on the fly' (interactive molecular dynamics in VR, IMD-VR), which is useful for flexible docking and examining binding processes and conformational changes. AREAS COVERED: The authors use the term 'interactive VR' to refer to software where interactivity is an inherent part of the user VR experience e.g. in making structural modifications or interacting with a physically rigorous molecular dynamics (MD) simulation, as opposed to using VR controllers to rotate and translate the molecule for enhanced visualization. Here, they describe these methods and their application to problems relevant to drug discovery, highlighting the possibilities that they offer in this arena. EXPERT OPINION: The ease of viewing and manipulating molecular structures and dynamics, using accessible VR hardware, and the ability to modify structures on the fly (e.g. adding or deleting atoms) - and for groups of researchers to work together in the same virtual environment - makes modern interactive VR a valuable tool to add to the armory of drug design and development methods.


Subject(s)
Virtual Reality , Drug Design , Drug Discovery , Molecular Dynamics Simulation , Software
2.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1569290

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

3.
J Chem Inf Model ; 60(12): 5803-5814, 2020 12 28.
Article in English | MEDLINE | ID: covidwho-1065781

ABSTRACT

The main protease (Mpro) of the SARS-CoV-2 virus is one focus of drug development efforts for COVID-19. Here, we show that interactive molecular dynamics in virtual reality (iMD-VR) is a useful and effective tool for creating Mpro complexes. We make these tools and models freely available. iMD-VR provides an immersive environment in which users can interact with MD simulations and so build protein complexes in a physically rigorous and flexible way. Recently, we have demonstrated that iMD-VR is an effective method for interactive, flexible docking of small molecule drugs into their protein targets (Deeks et al. PLoS One 2020, 15, e0228461). Here, we apply this approach to both an Mpro inhibitor and an oligopeptide substrate, using experimentally determined crystal structures. For the oligopeptide, we test against a crystallographic structure of the original SARS Mpro. Docking with iMD-VR gives models in agreement with experimentally observed (crystal) structures. The docked structures are also tested in MD simulations and found to be stable. Different protocols for iMD-VR docking are explored, e.g., with and without restraints on protein backbone, and we provide recommendations for its use. We find that it is important for the user to focus on forming binding interactions, such as hydrogen bonds, and not to rely on using simple metrics (such as RMSD), in order to create realistic, stable complexes. We also test the use of apo (uncomplexed) crystal structures for docking and find that they can give good results. This is because of the flexibility and dynamic response allowed by the physically rigorous, atomically detailed simulation approach of iMD-VR. We make our models (and interactive simulations) freely available. The software framework that we use, Narupa, is open source, and uses commodity VR hardware, so these tools are readily accessible to the wider research community working on Mpro (and other COVID-19 targets). These should be widely useful in drug development, in education applications, e.g., on viral enzyme structure and function, and in scientific communication more generally.


Subject(s)
Antiviral Agents/chemistry , Benzeneacetamides/chemistry , COVID-19/metabolism , Coronavirus 3C Proteases/metabolism , Imidazoles/chemistry , SARS-CoV-2/enzymology , Viral Protease Inhibitors/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Benzeneacetamides/pharmacokinetics , Benzeneacetamides/pharmacology , Coronavirus 3C Proteases/genetics , Crystallization , Cyclohexylamines , Drug Design , Humans , Hydrogen Bonding , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Conformation , Pyridines , Structure-Activity Relationship , Viral Protease Inhibitors/pharmacokinetics , Viral Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL